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ABSTRACT

The accumulation of data from various instrumental analytical instruments has paved a way for the
application of chemometrics. Challenges, however, exist in processing, analyzing, visualizing, and
storing these data. Chemometrics is a relatively young area of analytical chemistry that involves
the use of statistics and computer applications in chemistry. This article will discuss various
computational and storage tools of big data analytics within the context of analytical chemistry with
examples, applications, and usage details in relation to fog computing. The future of fog computing
in chemometrics will also be discussed. The article will dedicate particular emphasis to preprocessing
techniques, statistical and machine learning methodology for data mining and analysis, tools for big
data visualization, and state-of-the-art applications for data storage using fog computing.
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INTRODUCTION

The rise of several hyphenated analytical techniques and their applications have led to the development
of various chemometric methods in order to come up with meaningful information from the data
generated by these instruments (Kumar, Bansal, Sarma & Rawal, 2014). The applications of
chemometrics are extensive, ranging from multicomponent analysis in spectroscopy to the areas
of bioinformatics, molecular genetics, and genetic epidemiology in recent years (Dumancas, 2012;
Dumancas et. al., 2014; Dumancas et. al., 2015).

One of the areas of chemometrics is in Process Analytical Technology (PAT). PAT is an initative
designed to improve the efficiencies of both the manufacturing and regulatory processes by utilizing
an integrated approach to quality analysis. One of the central cores of PAT is data analysis (Willis,
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2004), which encompasses various chemometric tools. Thus, the advances that are now visible in PAT
using chemometrics involve both the use of analytical instrumentation and mathematical methods
for multivariate data analysis (Bogomolov, 2011; Dubrovkin, 2014; Kessler, 2013; Pomerantsev &
Rodionova, 2012). The primary driving forces that led to the success of PAT would be the development
of novel analytical methods and the continuous expansion of their applications (Dubrovkin, 2014).

As mentioned earlier, there has been rapid growth of data due to the rise of various analytical
instruments. However, the main challenge comes from processing these data in a facile manner. In
certain cases, multiple sensors are studying the same variables or compounds of interest. As such, the
process of Data Fusion, a subclass of Chemometrics, is now considered an important topic (Esteban
et. al., 2005; Ovalles & Rechsteiner, Jr., 2015). Multi-sensor Data Fusion is a tool used to combine
the data from multiple sensors with the overall goal of providing a more reliable and accurate output
(Castanedo, 2013; Rashinka & Krushnasamy, 2017). The Joint Directors of Laboratories (JDL)
defines data fusion as a “multi-level and multifaceted process handling the automatic detection,
association, correlation, estimation, and combination of data and information from various sources”
(Steinberg et. al., 1999). The corresponding informational models emanating from data fusion should
simulate extremely complex problems by fitting to the massive amount of empirical semi-structured
and unstructured data (Isaeva et. al., 2012). Consequently, the algorithmic support and the interface
of a computerized analytical system (often with limited computer resources) should be adjustable to
systems with features of new types. Such challenge arising from analytical information management
led to several new perspectives and solutions, such as the concept of Cloud Computing, all of which
are part of the development of “Big Data Approach” (BDA) (Dubrovkin, 2014). Cloud Computing
can simply be defined as the operation of computer power or storage on remote servers by means of
anetwork. Using the Cloud, very high-level services with high computational power is now possible.
Fog computing, on the other hand, constitutes the layer below Cloud computing in connected Things
(Paret and Huon, 2017). In other words, Fog Computing is an extension of the Cloud Computing
paradigm to the edge of the network, thus enabling a new breed of applications and services (Bonomi
et al, 2012).

In this manuscript, the major aspects of Big Data utilization and processing in Analytical
Chemistry (Chemometrics), specifically some commonly used algorithmic and instrumental techniques
and aspects of computerized analytical systems, will be discussed. An interesting discussion will also
be the role of fog computing in chemometrics.

BACKGROUND

Chemometrics is a rapidly evolving field, which has multitude of applications in both descriptive and
predictive problems in experimental life sciences, especially in Chemistry. It is considered to be a
highly interdisciplinary area which includes Multivariate Statistics, Computer Science, and Applied
Mathematics utilizing methods employed in core data analytics. The primordial goal of chemometrics
is to address problems in various fields including that of Biochemistry, Medicine, Chemistry, Chemical
Engineering, and Biology among others (Khanmohammadi, 2014).

As mentioned earlier, the field of Chemometrics has a wide array of applications especially
in Biology and Medicine. For example, Support Vector Machines (SVMs) and Partial Least
Squares Discriminant Analysis (PLS-DA) are widely used techniques for classification purposes
involving microorganisms, medical diagnosis using spectroscopy, and metabolomics using Coupled
Chromatography and Nuclear Magnetic Resonance Spectrometry (Brereton, 2007). Studies for the
determination of quality of medicinal plants and standardization of herbal drugs utilize liquid and gas
chromatography with various chemometric techniques such as Principle Component Analysis (PCA)
and Linear Discriminate Analysis (LDA), among others, to analyze complex chemical compositions
of these medicines. The aforementioned techniques continue to be expanded as new methods for
quality estimation and are regularly explored (Bansal, Chhabra, Rawal, & Sharma, 2014).
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Food science is also one area where the applications of Chemometrics can be commonly
found. Specifically, Near Infrared Spectroscopy (Near IR) is used for calibration, classification and
exploratory purposes in food science. The ultimate goal is for the development of sensory analysis,
which links composition to products using sensory panels and PCA (Brereton, 2007). Increased
world population and reduced agricultural lands have also resulted in food scientists exploring more
efficient forms of food production by utilizing multiple analytical platforms (e.g. Nuclear Magnetic
Resonance spectroscopy, Liquid Chromatography-Mass Spectrometry, and Gas Chromatography-
Mass Spectrometry) to gather information and to develop novel chemometric tools to keep up with
this increasing amount of data (Khakimov, Giirdeniz, & Engelsen, 2015).

Besides food science, industries have also been employing chemometrics. For example, statistical
designs (e.g. Design of Experiments (DOE)) for improving the performance of synthetic reactions
are commonly employed in industries. Specifically, factors are screened that are known to influence
the performance of a reaction as well as implementing optimization of variables (Brereton, 2007).

Ton Mobility Spectrometry (IMS), a technique for ion separation in gaseous phases, has been
used extensively in the monitoring of military weapons, forensic examination, and analysis of air,
food, biological, and clinical qualities (Cumeras, Figueras, Davis, Baumbach, & Gracia, 2015).
Advancements in IMS instruments and separation techniques have opened an opportunity toward
more sophisticated chemometric analysis techniques. These chemometric techniques are geared
toward reducing data size and can also more efficiently combine data from various instruments such
as chromatography and spectrometry, which are difficulties previously faced by Near Infrared (NIR)
communities (Szymarska, Davies, & Buydens, 2016).

The field of chemometrics can be considered abstract. This is because the area is characterized
by the use of statistical and mathematical techniques, as well as multivariate methods, which can be
considered abstract. The algorithms and the techniques used in the processing and evaluation of data
can be implemented to various fields including Pharmacy, Food Control, Medicine and Environmental
Monitoring, among others (Matero, 2010; Mocék, 2012; Singh et. al., 2013). The number of published
manuscripts involving Chemometrics has increased significantly over the past four decades (Figure 1).

Fog computing is a model that extends Cloud computing and services to the edge of the network.
It does this by providing data, computing, storing, and applying services to end-users (Stoimenovic
et al, 2015). To be specific, fog computing involves an architecture that utilizes edge devices to
carry out a significant amount of computation, storage, communication and routed over the internet
backbone, and most precisely has input and output from the physical world (Bar-Magen Numhause,
2012). Fog computing has interesting and new applications in many areas. For example, it has been
proposed to aid process monitoring and control architecture of large-scale industrial processes (Luo
et al, 2018). In another study, fog computing has also become a key factor in smart dairy farming.
That is, fog computing has been utilized to process data near the farm and derive farm insights by
exchanging data between on-farm applications and transferring some data to the cloud. Specifically,
fog computing has been used in data processing of mid-infrared (MIR) spectroscopic datasets. These
datasets are used globally for the prediction of several milk quality parameters as well as deriving
numerous animal-level phenotypes (Bar-Magen Numhause, 2012). The aforementioned used of MIR
for predictive modeling is one major application of chemometrics. In this manuscript, we will discuss
the application of fog computing in the area of chemometrics.

BIG DATA ANALYSIS IN ANALYTICAL CHEMISTRY

Definition of Big Data in the Context of Analytical Chemistry

Modern analytical laboratories have the capability to routinely generate large amount of detailed
data for complex samples. Systematic organization and reduction are needed in order to capture the
most relevant information from these data. Such data handling procedures consist of data collection,
organization and creation of databases. In order to facilitate the tasks of data handling, automatic
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instrumentation and data handling procedures are employed. These automated procedures offer the
advantages of speed and accuracy and can greatly reduce the difficulty for routine applications of
Chemometrics. Data collection, including sample extraction and analysis, typically require considerable
amounts of time. Manual creation and organization of these databases greatly increase the amount of
time and effort required to carry out the preparation for data analysis (Burgard & Kuznicki, 1990).

There are two different approaches to data handling in Chemometrics, both of which assume the
use of computerized data acquisition as part of the entire instrumental system. The first one is a typical
data acquisition and analysis configuration (Figure 2). It consists of a stand-alone data instrumental
acquisition system that requires a data transfer interface for serially uploading the data for each sample.
This type of arrangement is relatively easy to implement but requires much user interaction to move
data from one system to another and to organize the database for analysis. Many times, the chemist or
laboratory technician assumes the roles of the data transfer interface and is responsible for the manual
organization, tabulation, and entry of the data into the computer where data analysis will occur. A
better arrangement is when the data transfer interface is electronic and information is uploaded via
a standard protocol to a host computer. Personal computers (PCs) and PC-based instrumental data
systems are useful for this step since commercial database managers make it easy to manipulate large
quantities of data. It is even possible to use the PC for the final data analysis as multivariate software
packages for data analysis are now available for PCs (Burgard & Kuznicki, 1990).

The second type of approach involves a completely integrated system where all functions are
performed in the same computer (Figure 3). Such an approach offers the advantages mentioned in
the first approach as mentioned earlier in addition to supporting multiple instruments and users
simultaneously. Multi-user Laboratory Automation Systems (LASs) can be configured for such
operation. There are available software vendors which provide support for the data acquisition and
possibly the data management systems Laboratory Information Management Systems (LIMS). General
purpose statistical software packages are also available for various laboratory computer systems. Data
analysis packages have also been developed privately and integrated into the laboratory computer
systems. However, the major disadvantage of this approach is the requirement for custom development
and/or installation of the data reduction software (Burgard & Kuznicki, 1990).

Figure 1. Number of manuscripts published over the years using the keyword “chemometric” in PubMed, as of March 2018
(Designed by authors, 2016)
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Figure 2. Typical data acquisition and analysis configuration (Burgard & Kuznicki, 1990)
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Figure 3. Ideal data acquisition and analysis environment (Burgard & Kuznicki, 1990)

Laboratory General MVA
automation purpose users
users users

Analytical
instrument
interfaces

Peripheral devices

Laboratory
automation

system




International Journal of Fog Computing
Volume 2 « Issue 1 « January-June 2019

Data Preprocessing

Data preprocessing is considered to be the second most important step in Chemometrics after study
definition and data collection (Burgard & Kuznicki, 1990). Pretreatments in Chemometrics are
applied for various reasons, most notably to overcome problems such as scaling differences between
variables, background errors, and noisy data, among others. The overall aim of pretreatment is to
improve data quality before modeling and remove physical information from the data. It may also be
necessary to reduce the total amount of data. The application of a pretreatment step can often increase
the repeatability/reproducibility of the method, model robustness and accuracy, although there are
no guarantees that this will actually work (Stevens & Ramirez-Lopez, 2014).

Preprocessing simply means to put the data into a meaningful form for further comparisons; that
is, the conversion of raw data to units or scales that allow direct comparison of measurements for
different samples. There are three simple steps in data preprocessing. The first step is to convert the
data to units appropriate for the comparisons to be made. The second step involves the organization
and creation of a database. The third and last step involves mathematically conditioning the data in
preparation for the actual data analysis (Burgard & Kuznicki, 1990).

In Pattern Recognition, the commonly used methods in data preprocessing include:

Method 1: No pretreatment

Method 2: Mean-Centering, where the mean of each column is subtracted from each entry in the
column (usually a minimum treatment for Principal Component Analysis (PCA))

Method 3: Standardization as well as Mean Centering, wherein each entry in the column is divided by
the column Standard Deviation. Thus, the mean of each column is zero and Standard Deviation
(SD) =1 (also often applied prior to PCA and methods which are not scale invariant such as Soft
Independent Modeling by Class Analogy (SIMCA)). This method is also called Autoscaling.

Method 4: Row scaling, so the rows sum to a constant total (usually 1 or 100). Row scaling is useful
where the absolute concentration of a sample cannot be controlled.

Other methods to reduce scaling and other problems include log transforms and weighting the
variables. If the amount of data is too large to be handled in the software, it can be reduced by doing
PCA first and using the principal components in place of the original data set. All these methods
affect the final result of pattern recognition. Therefore, it is necessary to have a clear understanding
on why a data pretreatment step should be applied.

In the aforementioned methods involved in data preprocessing, methods 1 and 3 are done
automatically or are transparent to the user and are not considered to be a separate step in an analysis.
One good example is the conversion of chromatographic peak areas to parts per million which can
be accomplished in most instrumental data systems. This might be considered as the first step in
the preprocessing of chemical data. Centering and scaling procedures in the third method are often
considered to be part of a standard data reduction procedure and can be performed automatically
by most software packages. Method 2, on the other hand, is typically not available in commercial
software packages and thus, must be performed manually or by user created software or sequences.
This method involves aligning all the data for each sample to ensure that same data points represent
the same variable for each sample and the entry of the data into the database should be in a form that
can readily be accessed by using an analysis software (Burgard & Kuznicki, 1990).

Data Analysis: Regression-based Methods

Partial Least Squares (PLS)

Partial Least Squares (PLS) regression was introduced in the early 1980s and since then has gained
much popularity in Chemometrics (Helland, 2004). It is closely related to Principal Component
Regression (PCR), another Chemometric multivariate technique. However, PLS differs in that it utilizes
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the response information during the decomposition of the X data matrix. The main gist behind PLS is
to get as much response information as possible into the first few loading vectors. Unlike PCR, PLS
is a one-stage process as PLS performs decomposition on both the X and Y matrices simultaneously.
There is no separate regression step as in PCR. PLS, like PCR, can be performed when the predictors
are highly correlated (collinear).

In literature, PLS is often introduced and explained as a technique that maximizes an objective
function under certain constraints. The objective function is the covariance between X and Y scores
and the constraint is usually the orthogonality of the scores (Varmuza & Filzmoser, 2009).

There are two separate PLS algorithms — PLS1 and PLS2. PLS1, or one-block PLS, is performed
when there is one y response. PLS with several responses is called two-block PLS or PLS2 (Helland,
2004).

As with PCR, the key to PLS is the decision on how many ‘significant’ components to include
and the optimum number of components that can be decided from R * where R_?*is R* for the cross-
validated model. However, because PLS is a nonlinear technique, the cross-validated residuals must
be calculated by the leave-one-out technique repeating the model calculation many times.

The raw data matrix, Z, is initialized by carrying out a pretreatment step (usually Mean Centering
or Standardization) to give X. The same pretreatment is carried out on the response vector, Y, to give
C. There are several different algorithms used. This version of the PLS algorithm is a non-iterative
version (Brereton, 2003). The following are the steps involved in the PLS1 analysis:

Equation 1: The scores are given by: (Brereton, 2003)
t %

Equation 2: The X loadings are given by: ————
J(ZF)

Equation 3: The C loadings are given by: (Brereton, 2003)

(Brereton, 2003)

The X residuals are computed as:

X

resid

=X —t* p (Brereton, 2003)
And the new response estimate is given by:

C,. =C+t*q (Brereton, 2003)

To get new calculated values of Y, the pretreatment must be reversed (e.g. if mean-centered, add
the mean). The C residuals can also be determined using the equation below:

C.,..=C—C . (Brereton, 2003)

The aforementioned algorithm is a PLS with one component (PLS1). Further components can
be included stepwise by replacing X and C in Equations (1) to (3) by the residuals X . and C__,
and recalculating.

PLS2 regression, on the other hand, is a variant of PLS that is a generalization to several dependent
variables (Helland, 2004). In other words, this type of regression predicts simultaneously several
dependent variables (Banks, House, McMorris, Arabie & Gaul, 2011). The algorithm is an extension
of the PLS1 algorithm except that a concentration matrix C is used. If a mixture is being analyzed,
for example, PLS1 can be applied to the concentration vector for each component, or PLS2 can be
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applied in one process using a concentration matrix C where each column is a concentration vector
for each component.

Principal Component Regression (PCR)

In Ordinary Least Squares (OLS), the number of variables must be less than that of the number of
samples (objects) and these variables cannot be highly correlated. In cases where the variables are
highly correlated, this leads to a singular data matrix which cannot be inverted in the least squares
process. In order to minimize the problem of collinearity, and hence the need to decide which
variables to use, PCR or PLS techniques can be used. By definition, the variables in PCR and PLS
are orthogonal (uncorrelated), so collinearity is no longer an issue.

The PCR model is as follows:
y=T%*a—e (Brereton, 2003)

Where T is a matrix of the first ‘m’ principal component scores, a is a vector of coefficients and
e is the error vector. This can be compared to the general linear model:

y =X *b—e (Brereton, 2003)

where X is the original data matrix (usually auto-scaled i.e. subtract the mean and divide by the
Standard Deviation of each column or mean-centered i.e. subtract the mean of each column)
The matrix 7 can be calculated by determining L, the set of eigenvectors of the matrix X7 * X

T = X * L (Brereton, 2003)
y=T*a+e=[X*L]*a+e (Brereton, 2003)

Hence, the coefficients for the PCR model are given by b = L * a and a is determined from the
scores using OLS as given by:

a=(T"*T)"*T" *y (Brereton, 2003)

This is essentially the method used to determine b in OLS. However, the matrix 7 has orthogonal
columns so the problem of collinearity is avoided.

To calculate the predicted responses from the original (unscaled) data, the coefficients can be
determined by dividing the elements of b by the Standard Deviation of the corresponding column of X.

If the whole score matrix is used, the results will be the same as OLS. However, the secret to
successful PCR is using enough ‘significant’ eigenvectors in L (and corresponding columns of 7) to
get a successful model and screen out noise. If the eigenvalues (and corresponding eigenvectors) of
X™X are arranged in order of decreasing eigenvalues, then only the eigenvectors corresponding to
‘significant’ contribution are used in the matrix L.

Ridge Regression

Ridge Regression is a general term encompassing different forms of regression (linear, logistic,
survival, etc.) and is used as a solution in cases of multicollinearity existing among regression predictor
variables in a model. It does this by incorporating the ‘ridge penalty’. The ridge penalty is known by
many names, e.g. Tikhonov Regularization, Constrained Linear Inversion, etc. It first gained wide
recognition through the landmark 1970 paper by Hoerl and Kennard (Hoerl & Kennard, 1970). It is
ideal for use in models with multicollinearity and other ill-posed problems. Like other regularization
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techniques, it involves imposing a constraint on the parameters in a model in order to mitigate variance
inflation. Say we have a linear model with p parameters, which we represent as a p-dimensional vector
B. Then, the ridge penalty effectively controls the L, norm of f. In other words, it coerces the sum
of squares of the parameters to fall below a particular value which is usually a tunable parameter:

| |ﬁ| |§S ¢’ (Hoerl & Kennard, 1970)

The ridge penalty exploits the bias-variance tradeoff by increasing the bias of the parameter
estimates in exchange for a reduction in their variance. The latter is particularly important in ill-posed
problems (e.g. where strong correlations exist among independent/explanatory variables) which are
often plagued by variance inflation. The strength of the penalty (regularization) can be tuned to suit
the particular problem it is applied to.

Validating Regression Based Methods

The validity of the regression model needs to be tested to have confidence in its use to predict properties
of new samples. The type of validation used depends on the number of samples in our training set
(samples where there is an independent assessment of the property that is being determined in the
modelled experiment).

Cross-Validation (CV)

In full Cross-Validation (sometimes called ’leave-one-out’ CV), an object is left out of the training
set and then its property is determined based on a model established from the rest of the training set.
Thus, this object does not form part of the process of finding the model. This is repeated for each
object in the data set. If it is a good method, then the predicted properties will be close to the values
determined independently. A superior method, if there are sufficient objects or samples available in
the data set, is to divide the set into a training set and a test set. Roughly a 2:1 training: test ratio is
said to be the best. The model is established based on the training set only and is used to predict the
properties for the test set.

Even better is to use a ‘bootstrap’ method where a test set is selected at random and a model is
constructed from the remaining samples. The procedure is applied, the selected samples are replaced
and then a new test set is selected. This is repeated multiple times.

Data Reduction in Chemometrics

The ultimate goal of data reduction is the replacement of a large amount of measurements by a few
characteristic numbers in which all relevant information has been preserved. Depending on the type
of data measured and the type of information needed, there is a number of methods involved in data
reduction. In most cases, the data reduction method can be obtained by fitting a model through the
data points. Consequently, the obtained model is then used to describe the data instead of the data
themselves. The process of fitting models is one of the principal cores used by chemometricians.
Within the context of calibration, the model is usually a straight line. In multicomponent analysis, on
the other hand, the model consists of a system of linear equations. Lastly in optimization, the model
is a polynomial consisting of several independent variables (Deming, Michotte, Massart, Kaufman
& Vandeginste, 1988).

Principal Component Analysis (PCA)

The ultimate goal of Principal Component Analysis (PCA) is to obtain a set of K variables and identify
a smaller number of components that can be determined from the data while representing a large
proportion of the variance in the data. This is simply accomplished by identifying relationships between
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the K variables and producing a set of K uncorrelated components (new variables). Each component
is a function of the original variable. Such a function is called an eigenvector (O’Donoghue, 2013).

It is often useful to reduce the number of variables prior to exploratory or supervised data
analysis (Brereton, 2009). Principal components (PCs) can be used for many different purposes and
in addition to data visualization, can also be used for data reduction. Given a matrix X, instead of
utilizing the original J raw variables in such original matrix, ‘A’ orthogonal variables or PCs are used
as represented by a scores matrix 7 as input to the classifier (Brereton, 2009).

PCs are often ordered according to their size or eigenvalues with PC1 being the largest and PCA
the smallest. By this, it simply means that PC1 consists of scores that have the largest sum of squares
or largest eigenvalue. PCA is known to be an unsupervised method of data reduction. This means
that the calculation of PCs does not take group membership of samples into account. This creates
advantages within the context of data reduction prior to model testing. For example, there is no risk
of over-fitting if PCA is performed on the overall dataset including that of the testing and training
sets together prior to classification (Brereton, 2009).

PCA is a data reduction method. Its aim is to reduce a large data set into a much smaller
set but one which retains the essential information of the original set. For example, consider the
measurement of the IR spectra of 100 samples from 400-4000 cm’. If, as commonly done, every 1
cm! is performed, then the final data set consists of 100 x 3600 or 36,000 points. However, much
of this data is superfluous. Two wavenumbers that are only lcm™ apart will contain essentially the
same information. Thus, we could leave out a lot of the data, but which wavelengths to be omitted
remains the challenge.

In this example (Table 1), there are 4 variables X, — X, (the 4 wavelengths). The idea behind PCA
is to find new variables Z, —Z, which are linear combinations of the original variables: Z =a X, +
a,X,+a,X,+a,X,.... Z,=a,X +a,X +a,X, +a, X, (Brereton, 2009). Of course, there is
no reduction if there are still 4 variables but in PCA, the Z variables (called principal components)
are ranked in decreasing order from Z, containing the largest amount of information (i.e. accounts for
the largest amount of variation in the original data set) to Z,. In this case, the first two PCs account
for 88% of the total variation so the total data set can be represented adequately with only 2 variables.
This isn’t a big reduction, here, but in the IR case described above, with 3600 variables, it is often
possible to describe the whole data set with only a few variables.

Another feature of PCA is that the coefficients a, are chosen so that the Z’s are orthogonal (i.e.
uncorrelated). The following are the steps in calculating the coefficients:

1. Pretreatment

Let X be our original data set. Commonly in PCA there are 3 forms of pretreatment applied to X:

—_

No pretreatment

2.  Mean-Centered: The mean of each column is subtracted from each entry in the column

3. Standardization: as well as Mean Centering wherein each entry in the column is divided by the
column Standard Deviation. Thus, the mean of each column is zero and Standard Deviation (s.d.)
=1

Which one to apply? In spectroscopy, data is commonly mean-centered. If the data variables
are parameters which differ in scale (e.g. pH and temperature), then the data should be standardized.

2. Determine the eigenvalues and eigenvectors of the pretreated data matrix:

10
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Table 1. Example data used for Principal Component Analysis (PCA) (Brereton, 2009)

Compound Wavelength 1 (cm™) | Wavelength 2 (cm™) | Wavelength 3 (cm™) | Wavelength 4 (cm™)
300 350 400 450
A 16 62 67 27
B 15 60 69 31
C 14 59 68 31
D 15 61 71 31
E 14 60 70 30
F 14 59 69 30
G 17 63 68 29
H 16 62 69 28
1 15 60 72 30
J 17 63 69 27
K 18 62 68 28
L 18 64 67 29
Mean 15.75 61.25 68.92 29.25
Standard deviation 1.485 1.658 1.505 1.485

The PCA of X (correlation option) gives eigenvalues and eigenvectors of the correlation matrix
= eigenvalues, eigenvectors of [WT * W] /(n-1) where W is standardized matrix (Xij - X, S,

The PCA of X (covariance) is eigenvalues, eigenvectors of [VT * V] /(n-1) where V is a centered
matrix (xij - X ) The aim of PCA is to decompose the original (treated) matrix W or V as follows:

W =T * [ Brereton, 2009)

In the aforementioned equation, L is the loadings matrix and has columns which are the
eigenvectors of W. The loadings relate the new (latent) variables to the original variables. These are
the coefficients a, listed above. T is the scores matrix and shows how the objects (rows of X) relate
to the latent variables. It is important to remember that loadings relate to variables (columns) and
scores to objects (rows).

T can be determined by:

T =WH*L

There are several algorithms used to obtain 7 and L. One is called Single Value Decomposition
which decomposes W (or V) as follows

W =U *diag (»)*L" (Brereton, 2009)

Thus, T = U*diag(A) and diag(}) is a square matrix with the eigenvalues along the diagonal and
zeroes everywhere else.

1"
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Table 2. PCA analysis of data from Table 1 (Brereton, 2009)

Eigen analysis of the
Correlation Matrix
Eigenvalue 2.880 0.654 0.389 0.0844
Proportion 0.720 0.161 0.097 0.021
Cumulative % 72 88 98 100
Loadings Scores
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4
-0.546 0.237 0.395 -0.699 -1.595 -0.766 -0.991 0.185
-0.546 0.298 0.324 0.712 1.291 -0.466 0.561 -0.128
0.400 0.912 -0.072 -0.043 1.722 -1.412 0.147 -0.058
0.493 -0.145 | 0.856 0.048 1.4929 0.926 0.660 0.243
1.592 0.078 -0.330 0.280
1.656 -0.708 -0.477 -0.120
-1.362 -0.015 0.575 0.181
-0.731 0.348 -0.511 0.160
1.755 1.451 -0.160 -0.248

The PCA analysis of the above data set gave the output seen in Table 2.

Note that the first PC describes 72% of the total variability and PC1+ PC2 describes 88% of
the variability (Table 2). The scores give useful information on groupings of objects (this is called
a score plot) (Figure 4).

There are clearly two groups of objects. The separation is along the PC1 axis. Examining the
loadings shows that the two higher wavelengths separate in a positive direction and the two lower
ones in a negative direction. Closer examination of the original data should confirm that one group
has slightly higher readings for the higher wavelengths and lower readings for the lower wavelengths.

Pattern Recognition in Chemometrics

Pattern Recognition is the area of Chemometrics where the patterns or structure in our data can be
discovered. Basically, the methods can be divided into unsupervised and supervised methods.

In unsupervised methods, no prior assumptions about structure or groupings in our data is made.
Infrared spectra of a large range of polymers may be recorded, for example. A technique like Principal
Component Analysis (PCA) is used, which produces a plot of the first two principal components.
Then, this plot is examined to see if there are any groupings of the samples, and if so, whether or not
these samples have anything in common structurally. PCA requires no assumptions to be made about
possible groupings before carrying out the analysis; it is an exploratory method of data analysis used to
first look at any structure in our data. Unsupervised Pattern Recognition is also referred to as Cluster
Analysis. The chief method used in cluster analysis is Hierarchical Cluster Analysis, which attempts
to group objects which are ‘similar’ (there are a range of methods used to measure this similarity)
and this is displayed on a dendrogram.

In supervised methods, a training set of objects is used where the groups are known. The aim is
then to form a rule, based on the measurements, which will assign each object to its correct group. The
object is assigned to a group according to which group is the ‘closest’. It is the choice of a distance
measure that varies between the methods.
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Figure 4. PCA scoreplot of data from Table 1 (Brereton, 2009)
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Clustering Techniques

Clustering techniques have been employed in a wide range of disciplines. In Archaeology, clustering
has been used to investigate the relationship between various types of artifacts. In psychiatry, the
methods have been utilized to refine existing diagnostic categories. Further, in market research,
clustering techniques have been employed to produce groups of consumers with different purchasing
patterns (Everitt et. al., 2011).

Essential to the understanding of various clustering techniques is the correct identification of
the number k of clusters that is somehow inherent in the data. The ultimate goal of cluster analysis is
to find clusters where the objects within the clusters are as similar as possible and objects between
different clusters are as dissimilar as possible. In order to assess the similarity and dissimilarity of
objects within the clusters, a measure of ‘homogeneity’ and ‘heterogeneity’ between the clusters is
defined. Homogeneity measures between clusters can be based on the maximum, minimum or average
of the distances between all of a cluster or an average distance of the objects within a cluster to the
cluster center (Varmuza & Filzmoser, 2009). One possible choice for a measure of homogeneity W,
within a cluster j is:

n )
w, = Z | ‘xl.(j) — Cj‘ \2 (Varmuza & Filzmoser, 2009)
i1

A measure of heterogeneity between two clusters, on the other hand, can be based on the
maximum, minimum or average of all pairwise distances between the objects of the two clusters,
or on the pairwise distances between the cluster centers (Varmuza & Filzmoser, 2009). Thus, the
measure of heterogeneity B, between cluster j and / can be described as:
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By, =l|c; - ¢,|[* Varmuza & Filzmoser, 2009)

By combining the two aforementioned criteria, we come up with the validity measure as given
by the equation below which depends on the chosen number of & clusters. In order to determine the
number of clusters, a graph showing the number of clusters versus the validity measure is essential
with a knee indicating the optimal number of clusters (Varmuza & Filzmoser, 2009). The results in
a validity measure V(k) can be defined as:

k
Z j—le
—i (Varmuza & Filzmoser, 2009)

Z j—lBﬂ

A number of methods exist for Clustering. The most commonly used and simplest method is the
k-Means Clustering. In this technique, the original dataset is split into k clusters where k is known.
Consequently, each sample X, should be attributed to one of the clusters S B k=1, .....,K. It should
be noted that each cluster is characterized by having a centroid m, which is defined as the center of
masses of all samples in the cluster (Pomerantsev, 2014).

Unsupervised Pattern Recognition

Principal Component Analysis (PCA)

PCA is a data reduction method which reduces the initial data set to a set of new variables (called
principal components) which are much smaller in number than the original number of variables but
retains most of the information in the original data set.

Visually, PCA can be displayed as the score plot of the first two principal components. This topic
is covered further in the document ‘Principal Component Analysis.’

Hierarchical Cluster Analysis (HCA)

The initial step in this analysis is to determine similarity between objects. The key is the measure of
similarity used. Options are:

Correlation Coefficient between samples: This is a statistical measure of the strength of a linear
relationship between paired data. In a sample, it is denoted by r and is by design constrained, where
positive values denote positive linear correlation, negative values denote negative linear correlation,
a value of zero denotes no linear correlation and the closer the value is to 1 or -1, the stronger the
linear correlation.

Euclidean Distance: The distance between 2 samples k and 1 is defined as:

7
Z(x1g —)C_,/-)2 (Brereton, 2009)
J-1

where there are ] measurements and xkj is the jth measurement on sample k. Each measurement
might be an absorbance in a spectrum at one wavelength, for example (Brereton, 2009).
Manhattan Distance:
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d, = i‘xlg - xl‘ (Brereton, 2009)
=

Mahalanobis Distance:

d, = \/(xk - X, ) * ! *(x, —xl)T (Brereton, 2009)

Here, the x’s are column vectors of measurements on a single object and C is the variance-
covariance matrix whose elements represent the covariance between any two variables.

Once a measurement of similarity is decided, the next step is to link the objects. This can be
done in several ways. The most common approach is to link the objects one at a time using the chosen
similarity measurement. This can be depicted in a dendrogram (Figure 5). For example, suppose that
we have 6 objects or samples and the correlation coefficient is used as the similarity measurement.
The two most similar objects are linked as a branch at the bottom of the tree. This group is then
linked to the object which is most similar to this group to form a new group. This is continued until
all objects are linked in the tree. An example of such a tree is shown below.

Supervised Pattern Recognition

With these types of methods, it must be determined whether measurement of a property or set of
properties can be used to assign an object to a group. For example, could the infrared spectrum of a
polymer be measured and used to determine whether it is a polyolefin or a condensation polymer?
First, a model must be established using a training set of objects. This set must contain sufficient
members of each of the groups. The question is then how to assign membership of the group.

Discriminant Analysis

This is a collection of parametric classification methods that models each class by the centroid and
covariance matrix determined from a set of predictor values. Each object to be classified is done so
by comparing its data to the centroid and covariance matrix data of each class and locating which
class data is ‘closest’ to the object data. The methods differ in the way the object-class ‘distance’ is
calculated.

Nearest Mean Classifier (NMC)

This is the simplest method. The simple Euclidian distance is used as the distance measure to the
class centroid. The class centroid is the average for each measure for the objects in the group. For
example, if the measure was an infrared (IR) spectrum, the centroid would be a J-vector where each
j element was the average of absorbances at the jth wavenumber. This method is a poor performer
because it ignores scale differences. In the IR example, this would not be so important but if the
measures have very different scales, such as if we had environmental data and one measure was pH
and another EC in uS/cm, then the EC measure would dominate.

Linear Discriminant Analysis (LDA)

The distance method used is the Mahalanobis Distance. The method assumes the same covariance
structure for each group i.e. each group is equally ‘scattered’. Boundaries between the classes are
straight lines or planes (Figure 6).
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Figure 5. Example dendrogram for classification of observations (Brereton, 2009)
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Quadratic Discriminant Analysis (QDA)

This method also uses the Mahalanobis distance but a covariance matrix is calculated for each group.
Thus, the measure varies depending on what group the object is in. QDA works well when group
differences depend on scale and not location. Boundaries between groups can be curved.

Regularized Discriminant Analysis (RDA)

This method spans all the discriminant methods above. Often, the optimum method is found between
the above methods. RDA is a biased method as it has two adjustable parameters A and y. A biases
the method towards a single class covariance matrix. y shrinks the class covariance matrix towards a
multiple (the average of the eigenvalues) of the identity matrix. Both parameters have values between 0
and 1. A=0 and y=0 regularized discriminant analysis is same as quadratic discriminant analysis. A=1
and y=0 is same as linear discriminant analysis. A=1 and y=1 is same as the nearest mean classifier.

Soft Independent Modeling of Class Analogy (SIMCA)

SIMCA, like RDA, is a biased version of discriminant analysis. Instead of calculating unbiased
class covariance matrices, each group is represented by a principal components model. An object is
classified according to its distance from this model. The method is ‘soft’ in that classes can overlap
and objects can belong to more than one class.

Partial Least Squares Discriminant Analysis (PLSDA)

PLS can be used to carry out class modeling. A PLS model is set up the usual way with the y
variable, a number indicating group membership. For example, consider the investigation of a 2-way
classification such as determining gender from lifestyle preferences. A training set with columns
(the X block) indicating preferences for various lifestyle choices is set up. y=1 for male and y=-1
for female is then assigned. The model is then applied to the test set to predict y and if y is positive,
assign male and for negative, female.
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Figure 6. Example linear discriminant analysis (LDA) plots (Brereton, 2009)

LDA Class Assignments LDA Xvalidated Class Assignments
2 %5?@ """"" L T Qogm-meeee
k= E g
1=—t-=--=n==- 6@ ---------------------------- 1=t-=-=--==-- @@ —————————————————— Q —————————

assigned class assigned dass

Wavelet Transforms

Most analytical instruments often develop noises and fluctuations at the recording stage of the
spectrum. This causes a reduction in the original signal of the analyte leading to decreased signal to
noise ratio also called noise effect. Noise effect is often eliminated by various means so as to yield
quality information from the acquired experimental data. Wavelet Transforms represents one of the
most powerful methods to improve Signal to Noise ratio. A wavelet is defined as a family of functions
derived from a basic function called the wavelet basis function by dilation and translation. Wavelet
basis functions are those functions with some special properties such as orthogonality, compact
support, symmetry and smoothness. Wavelet Transform is a projection operation of a signal onto
the wavelet (Chau et. al., 2004).

Wavelet Transform is a wavelike function, that upon scaled and translated, can be used to
decompose a signal into its basic constituents at different scales. Each scale component can be
converted into a frequency range. Thus, the resulting Wavelet Transform measures the time-frequency
variations of frequency components in a non-stationary sign (Liang, 2014). The Wavelet Transform
method is often considered to be advantageous over the traditional Fourier Transform method when the
signal contains discontinuities and sharp spikes. The method also offers good localization properties
in both the time domain and the frequency domain (Bos & Vrielink, 1994).

Several applications of Wavelet Transforms have been documented, such as pre-processing of
infrared spectra, deionizing or compression of signals through thresholding (Alsberg et. al., 1997;
Mittermayr et. al., 1996; Walczak & Massart, 1997), Pattern Recognition and compression of data
(Walczak et. al., 1996), and qualitative analysis based on linear models (Depczynski et. al., 1999;
Jouan-Rimbaud et. al., 1997)

Continuous and Discrete Wavelet Transforms

Wavelet Transform comprises of two distinct parts called the Discrete Wavelet Transforms (DWT)
and Continuous Wavelet Transforms (CWT) which were developed independently in several fields
(Daubechies, 1992; Ma & Shao, 2004; Walczak, 2000). While CWT is popular among physicists,
the DWT is more common in numerical analysis, signal and image processing.

Continuous Wavelet Transform

The CWT is an operator that displays and analyzes the characteristics of a signal depending on two
variables: time and scale. Hence, as a two-variable function, CWT can be considered as a surface
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or image. CWT is typically defined with respect to a specific function, called a mother wavelet, that
satisfies some particular properties. The Continuous Wavelet Transform W,_,, for a time signal x(7) using

(ah\

1% LB
W, =T j (£ [—]dﬁ Yahbe R
a wavelet function y(?) is given by the equation ¢ @

(Ding¢ & Baleanu, 2004; Maldague, 1994)

where a, b and R represents scale variable, shift variable and set of real numbers respectively.
The wavelet function y(#) is a continuous function in both the time domain and the frequency
domain called the mother wavelet, and the superscripted asterisk (*) symbol represents operation
of complex conjugate. For real-valued wavelets, y*(f) = y(r), the mother wavelet acts as a source
function to generate daughter wavelets by dilation and shift operations from the mother wavelet, and
is represented by the equation

1
v, (t)=—7=v (—) (Ding & Baleanu, 2004; Maldague, 1994)

Ja' \ a

where a and b are dilation and translation parameters respectively.

It should also be taken into consideration that not every function can qualify to be a mother
wavelet (Sadowsky, 1996). In order for a function to be a mother wavelet, it should satisfy an
essential property called the “admissibility condition” as described by the following equation

o | m
o= .I-Mdm < 4o
w
i ot

(Ding & Baleanu, 2004; Maldague, 1994)

where CW is a constant corresponding to a particular wavelet y(¢), o is the frequency and y(w)
is the Fourier Transform of the wavelet y(z). The admissibility condition implies that the Fourier
Transform of y(#) vanishes at the zero frequency and the mother wavelet is to be zero-mean (Rudnick,
2017). As such, the mother wavelet must be oscillatory (a wave) and a band pass filter, compact in
both frequency and time.

Discrete Wavelet Transform

The main difference between the Discrete Wavelet Transform (DWT) and CWT is that it decomposes
the signal into mutually orthogonal set of wavelets. It is therefore an implementation of the Wavelet
Transforms using a discrete set of the wavelet scales and translations obeying some defined rules
(Din¢ & Baleanu, 2004; Liang, 2014; Maldague, 1994). The basic functions for DWT are the scaled
and dilated versions of the wavefunctions (y(¢)) and scaling function (® (7)) and can be conveniently
expressed by the equation below:

| (x)=> 4,6 (S, —k) (Ding & Baleanu, 2004; Liang, 2014; Maldague, 1994),

k-w
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where S is the scaling (normally chosen as 2). One of the distinct features of DWT is that it can
be regarded as a mathematically formalized subband coder and are normally implemented as a bank
of bandpass filters (Ding & Baleanu, 2004; Maldague, 1994). Digital Filter banks are a set of four
filters consisting of both low pass and high pass filters and are used in the analysis and reconstruction
of the signals. The filters are collectively called Quadrature —Mirror Filters (QMFs). The QMFs
ensures perfect reconstruction of the signal with no loss of information.

Wavelet Translation and Dilation

Translations and dilations are two characteristic operators applied to single real-valued functions
of the general form y € L*(R). Here, y is typically referred to as the analyzing wavelet (otherwise
known as the ‘mother’ wavelet), and L*(R) refers to the space of infinite-energy (also known as
square-integrable) functions. A translation is defined as a shift of the argument along the real axis.
For example, for a given function y (¢) and a real value 7, the translation of y is given by y (¢ - 7).
Dilation, on the other hand, simply refers to a scaling of the argument, e.g. for a given function y (¢)
and a positive parameter s, a dilation of yis given by s~y (¢/s). Parameter s here refers to a continuous,
positive real parameter indicative of scale. Therefore, a dilation of a function corresponds to either an
expansion or contraction of the function . The extra multiplicative term 572 in the dilation expression
is introduced simply as a Normalization factor to guarantee an orthonormal wavelet basis.

Other Data Reduction Techniques
Linear Calibration Correlation

In order to clearly understand the concept of Least Squares Line, it is important to examine the
equations used in the process. Given two sets of data, X and Y, which are related to each other by the
following equation below:

Y = mx + b . (Robinson, Frame & Frame II, 2014)

The least squares slope of a line fitting this data is given by the equation below:

2, (X, - X)(x-Y)

m= (Robinson, Frame & Frame II, 2014)

> (- x)

And the least squares Y-intercept is given by:

b =Y —mX (Robinson, Frame & Frame II, 2014)

In the above equations, i is the data point index, m represents the slope and b is the Y-intercept
of the line (Robinson, Frame & Frame II, 2014).

The calculations involved in determining the calibration line constitute subtracting the average
X from all X values, the average Y from all Y values, then consequently performing the appropriate
summing, multiplication, squaring and division (Robinson, Frame & Frame II, 2014).

Errors and Confidence Limits

Standard Error is a factor that tells us how accurate our estimate of the mean is likely to be. Confidence
Limits, on the other hand, are indicators to determine how accurate the mean is likely to be (Robinson,
Frame & Frame II, 2014).
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Partly Straight, Partly Curved Calibration Plots

As previously stated, calibration plots are generated by expressing the relationship between sample
concentration and a measurable variable as

y= f (x) (Vandecasteele, 1997)

where y is the measurable variable and x is the sample concentration. In linear calibration plots,
this relationship takes the form of

Y = mx + b (Vandecasteele, 1997)

where Y is the measurable variable, ‘m’ is the slope of the linear curve, ‘x’ is the sample
concentration and ‘b’ is the y-intercept of the linear curve. There are, however, numerous reasons
why a theoretically linear plot can exhibit curving or deviance from the projected least-squares slope.
An unavoidable cause of data variance is the indeterminate, or random errors which are the result
of uncertain measurements or unknown human inaccuracies. Indeterminate errors cause scattering
along either side of the least-squares slope.

Some calibration plots exhibit minimal scattering but are not entirely linear. Partly straight, partly
curved calibration plots can occur when using spectrometric methods of obtaining a measurable
variable (y). Curves which move away from a previously determined least-squares slope typically move
in the negative direction on the high-concentration side of the calibration plot and may represent the
maximum detection capabilities of the method or machinery in question. These non-linear deviations
can appear quadratic in nature as the analyte approaches maximum detectability and peaks at the
limit of detection. Calibration plots exhibiting this type of curving cannot be analyzed using standard
addition unless the calibration plot of the machinery’s internal standard displays the same type of
nonlinear behavior at the same x-values as the analyte (Vandecasteele, 1997).

Regression Diagnostics

Comparison of regression models is best done by first calculating the residuals.
The residuals are calculated as follows:

e, = y, — Y (Brereton, 2009)
where Y, are the calculated values using the following model:

ESS = Zeiz and R* =1—ESS /TSS , with TSS = Z(y,- _mean(y))Z

R? is called the ‘Coefficient of Regression’ and can also be calculated as the square of the
correlation coefficient of y and Y. This parameter gives a measure of the ‘goodness of fit’ of the model
and gives the percentage of variation in the data which can be explained by the regression model.

The predictive power of the model can be determined from the Cross-Validated residuals

€.y 0 =y — @(,,-) (Brereton, 2009)
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where §;  denotes the predicted value of the i" observation from a model calculated without
—1

that observation. Therefore, the Predicted Residual Error Sum of Squares (PRESS) can be calculated
as:

PRESS =) ¢t and RZ, =1~ PRESS / TSS (Brereton, 2009; Pituch & Stevens, 2015)

i-1

The R_? values are a measure of the predictive ability of the model. The ‘best’ model, in terms
of the number of principal components used in the model, is thus the one which gives the highest
value of R_?. Note that while R* always improves with the addition of more components, this is not
true of R *. The situation of too many components is an example of ‘overfitting’.

Another diagnostic used is RMSEC (Root Mean Square Error of Calibration) as given by:

RMSEC = E—SS (Brereton, 2009)
df

Here, df is the degrees of freedom. RMSEP (Root Mean Square Error of Prediction) is a similar
diagnostic summed over the prediction samples.

Variable Selection

In regression modeling for data sets with a small number of variables, the common method of variable
selection is stepwise variable selection. The common approaches are forward and backward selection.
Forward Selection starts off with a single variable (the variable which is most strongly associated
with the response y). In subsequent steps, variables not present in the current model are considered
for addition, and then the variable which has the highest association with the residuals from the
current model is added. In backward elimination, the model starts with all variables and eliminates
at each step the variable whose exclusion results in the lowest increase in residual sum of squares.
Termination rules are usually evoked when addition or elimination of variables achieves no significant
improvement. Stepwise Regression is a combination of the two processes where variables may be
added or removed according to certain criteria. A variable previously removed can come back into
the model at a later stage, for example.

Stepwise Regression methods are only feasible when the number of variables is relatively small
and independent. With data sets from Chromatography, with measurements at each wavelength or
time interval, there may be thousands of variables for each sample and this number will greatly exceed
the number of objects or samples. While using PLS or PCR, variables can be combined into a small
number of ‘latent’ variables, a process of variable selection can greatly improve the performance of
the model.

Simple inspection of the data, as overlapping spectra or chromatograms, for example, can
sometimes be sufficient. ‘Baseline’ areas which are predominantly noise can be removed and possible
outliers identified. Simple functions of the variables can then be examined to help choose regions to
be excluded. These include, for each column: (i) Mean (ii) Standard Deviation (s.d.) (iii) Correlation
of the column with the response variable, y (iv) S.D./Mean.

The mean indicates large responses but this may not vary much from sample to sample (e.g a
contaminant at a constant level in all samples). The Standard Deviation shows which variables have
the most variation across all the samples. This variation, however may not be due to variation in y.
A component, which is not the response variable being analyzed, could vary between samples. The
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variation between samples due to y can be examined by using the Correlation Coefficient. Using
S.D./Mean may help to identify less intense peaks but which may be interesting.

There is a very large number of other variable selection processes which have been advocated
in literature. Criterion-based procedures look at all possible models and evaluate them using some
criterion. R? may appear to be the simplest, but R? always increases as variables are added to a model
so using this as a criterion results in ‘overfitting’ and useless models for prediction. Adjusted R?,
called Rza, can be used where R2a = 1-(n-1)/(n-p)(1-R?). n is the number of samples and p the number
of variables. Another commonly used criterion is Predicted Residual Sum of Squares (PRESS) which
is the sum of squares of the residuals (the i* residual is calculated using a model with the i variable
left out of the model). The model with the lowest PRESS is selected.

The problem with criterion methods is that the number of models grows exponentially as ‘p’
increases, as there are 2P-1 possible models. Even with as few as 100 variables, it would take about
1021 years to evaluate all models even at a rate of 10 evaluations per second. Algorithms have thus
been developed to improve the selection process for models. The best known is probably the Genetic
Algorithms methods which follow the concept of ‘survival of the fittest” when competing with other
models. Other procedures such as Particle Swarm Optimization and Ant Colony Optimization, which
both mimic biological processes, have been suggested. Overall, though, the processes of simple
inspection and plotting functions of the variables that were described previously will be sufficient
to select regions for modeling.

Programming Tools used in Analytical Chemistry Big
Data Storage and Visualization Techniques

Various programming tools are available for Big Data Storage and Visualization Techniques in
Analytical Chemistry. MapReduce is a programming model correlated with the implementation for
processing and generating large data sets with a parallel, distributed algorithm on a cluster (Shankland,
2008). It was proposed by Google for distributed processing of large datasets on massively parallel
systems (Dean & Ghemawat, 2004). The program of MapReduce consists of two parts: Map()
procedure (a method) and Reduce() method. The Map() procedure is used for filtering and sorting
of data (e.g. classify students by first name). The Reduce() method, on the other hand, functions for
summary operation. (e.g. determining the total number of students in each queue). The MapReduce
System is also called an “infrastructure” or “framework” system. It coordinates the processing by
marshalling the distributed servers as well as running various tasks in parallel. It also supervises all
communications and data transfers between various parts of the system, and provides warnings for
redundancy and Fault Tolerance (Dean & Ghemawat, 2004).

Within the context of Chemometrics, the MapReduce model has been used in an algorithm for
calculating Principal Component Regression (PCR). The algorithm consists of several steps: centering
of input matrix of regressors, optional regressors scaling, Principal Components Decomposition
of the preprocessed input matrix, PCR parameters calculation, Regression Quality evaluation and
calculation of prediction for a given set of samples. All these steps except for one are implemented
in terms of map-reduce functions and could, therefore, be parallelized and scheduled by Hadoop
(discussed below). Principal Components Decomposition is the only computational step realized
in non-parallel manner because sequential implicit QL-algorithm (Demmel, 1997) used in this step
solves the eigenvalue problem for up to 1000 regressors faster than what the Hadoop starts and warms
(Nuzhdin & Zhilin, 2012).

Apache Hadoop

Apache Hadoop, an open- source software implementation of MapReduce, is used for distributed
storage and also for processing of relatively large size of data sets (i.e. Tera- and even petabyte scale)
(Nuzhdin & Zhilin, 2012). It is made up of computer clusters which is built from commodity hardware.
It is believed that all the modules in Hadoop are outlined with a foundational supposition such that
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hardware failures are common phenomenon and should be automatically handled by the framework
(The Apache Software Foundation, 2014). Hadoop detects itself and manages failures at the application
layer and convey a highly-available service on top of a cluster of commodity machines rather than rely
on hardware to deliver high-availability (BigFoot Team, 2013). As previously mentioned, Hadoop
was used in PCR algorithm. Specifically, the algorithm was tested on experimental 2-node Hadoop
cluster for synthetic datasets of the dimension 1,000,000 x 500 and demonstrated speedup factor of
1.8 (Nuzhdin & Zhilin, 2012).

Apache Hive

Apache Hive is considered to be the defacto standard for interactive Structured Query Language
(SQL) queries over petabytes of data in Hadoop since its incubation in 2008.The Apache community
has considerably improved Hive’s speed, scale, and SQL semantics with the completion of the
Stinger Initiative, and the next phase of Stinger. Hive easily integrates with other critical data center
technologies using a familiar Java Database Connectivity (JDBC) interface. According to data
analysts, the usage of Hive is to query, summarize, explore, and analyze data, and then turn these into
actionable business insight. The advantages of using Hive for Enterprise SQL in Hadoop include its
familiarity by many users as well as its compatibility with many devices. It is also considered fast,
scalable and extensible (Apache Software Foundation, 2017). While there may be none or limited
studies showcasing the use of Apache Hive in analyzing analytical data, it may potentially be used
for facilitating, querying and managing massive datasets generated by various sophisticated analytical
instrumentation.

Spark

Spark is an in-memory data analysis with a Mapreduce programming model written in Scala. Resilient
Distributed Datasets (RDDs), fault-tolerant data structures for Cluster Computing is where spark is
based. The RDDs are established, subdivided assemblage of objects that support a wide range of
transformations and this allow the apps to keep working sets in memory for efficient reuse (caching).
By efficacy of working in memory, Spark is extraordinarily efficient for iterative algorithms and
interactive mining (BigFoot Team, 2013; Zaharia et. al, 2010). A crop breeding data analysis platform
on Spark has been proposed. The platform consists of Hadoop Distributed File System (HDFS) and
cluster based on memory iterative components. With this cluster, crop breeding large data analysis
tasks in parallel through API provided by Spark was achieved (Chen et. al., 2016).

Apache Pig

Apache Pig is a platform for analyzing huge data sets consisting of a high-level language for expressing
data analysis programs coupled with infrastructure for evaluating these programs. The salient property
of Pig programs is that their structure is amenable to substantial parallelization which in turns enables
them to handle very large data sets. Pig is a high level scripting language that is used with Apache
Hadoop (Apache Software Foundation, 2016; Apache Software Foundation, 2017). Within the context
of applied Spectroscopy in Analytical Chemistry, Pig provides execution framework for parallel
computation in a study involving a novel quantitative spectral analysis method based on parallel
BP neural network for dissolved gas in transformer oil. The parallel BP Neural Network model is
performed on the Hadoop Cluster Computing platform for component prediction. The experimental
results verify that the proposed model can predict the component concentrations of the dissolved gas
in transformer oil correctly and has high effectiveness (Zhong et. al., 2016).

Apache Cassandra

Apache Cassandra is a tool which is developed by Facebook and this is a distributed data storage
system comparable to BigTable. Apache Cassandra is designed for superintending sizable amounts
of structured data dispersed across many commodity servers, thus, delivering a key-value store with
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concordant consistency. The Cassandra API consists of three very simple methods; these are insert,
get, and delete. This allows the user to operate data with the use of multi-dimensional map indexed
by the key. Highly available service with no single point of failure is the main goal of Cassandra
(BigFoot Team, 2013; Lakshman & Malik, 2010). Apache Cassandra has possible applications in
analyzing large genomic datasets or data output from analytical instrumentation.

Distributed Storage Systems

Navigating large datasets in Chemometrics and Analytical Chemistry might be facilitated using
various distributed storage systems such as Amazon Dynamo and Google Bigtable. Such storage
systems will be discussed below. Further, the advent of powerful Chemometric and analytical
high-throughput methodologies have paved a way to generate massive datasets. These datasets will
be stored in databases using modern data compression and data management as mentioned in this
section. Basic visualizations such as bar charts and scatter plots are now realized as Javascript-based
interactive views and might have potential applications in Chemometrics and Analytical Chemistry.

Amazon Dynamo

Amazon Dynamo has been developed and used by Amazon which is a key-value distributed storage
system. Dynamo is a structured overlay which is based on unchanging assortment with utmost one-
hop request routing. It uses a vector clock scheme and a write operation. Clock scheme is used to
perceive conflicts while a write operation requires a read of the timestamps (BigFoot Team, 2013;
DeCandia et. al., 2007).

Google Bigtable

Google Bigtable, designed by Google, is a distributed storage system. Google Bigtable is used as
storage and manages petabytes of structured data across thousands of commodity servers. At the start,
Google outlined Bigtable as distributed data storage solution for several applications (like Google
Earth and Google Finance), which aims in providing adjustable, high performance solutions for
different application requirements (BigFoot Team, 2013; Chang et. al., 2007).

jQuery

jQuery is a cross-platform JavaScript library which is designed to make more comprehensible the
client-side scripting of HyperText Markup Language (HTML) (The jQuery Foundation, 2017). In
addition, jQuery is the most popular JavaScript library in use at the present time. It has an installation
on 65% of the top million highest-trafficked sites on the web. The jQuery’s syntax is designed to make
it uncomplicated to steer a document. It also provides potential for developers to generate plug-ins on
top of the Javasript library. This empowers developers to create abstractions for low-level interaction
and animation, advanced effects and high-level, themeable widgets (jQuery, n.d.).

Wildfly

Wildfly is a free and open-source software.This is an application server authorized by JBoss and is
currently reinforced by Red Hat. Wildfly is written in Java, executes the Java Platform, Enterprise
Edition (Java EE) specification, and also runs on numerous platforms (Wildfly, n.d.).

JavaScript Library

JavaScript library is a library of pre-written JavaScript which allows for easier development of
JavaScript-based applications, especially for AJAX and other web-centric technologies (JavaScript
library, n.d.).
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Programming Languages

Various programming languages such as Perl, Java, Scala, C, C++, C#, Python, Perl, PHP and Ruby
on Rails are considered commonly used languages that may have potential applications in both
Chemometrics and Analytical Chemistry. For example, a set of Perl scripts was written to extract
structural parameters from the x-rays in one study (Worley, 2015). In another study, Haystack, which
is a web-based server, uses the scripting languages Perl and R and a website interface powered by
PHP (Grace et. al., 2014). Some background information about these programming languages are
briefly described below.

Perl

Perl is a popular open-source programming language. It is a scripting language consisting of a sequence
of commands that the computer must execute and perform (Berman, 2009).

Java

Java is an all-purpose computer language that is concurrent, class-based, object-oriented, and
specifically designed to have as few implementation dependencies as possible (Gosling et. al., 2014).
An RCDK package, a Java framework for Chemoinformatics was developed in R that provides the
user with access to the CDK. The library allows the user to load molecules, evaluate fingerprints and
calculate molecular descriptors (Guha, 2007).

Scala

Another all-purpose programming language is the Scala. Scala is an acronym for “Scalable Language”.
This means that Scala grows with you. You can play with it by typing one-line expressions and
observing the results (Odersky, 2017). It has been applied in the areas of Chemometrics specifically
in its implementation of the PLS algorithm (Dayal & MacGregor, 1997).

C, C++, and C#

C, C++, and C# are other programming languages that have been used in scriptwriting in
Chemometrics (Einax, 1995). C is a powerful system programming language, and C++ is an excellent
general purpose programming language with modern bells and whistles. C# is a programming
language designed by Microsoft. It is based on C/C++, and bears a striking similarity with Java in
numerous ways. C# aims to combine the high productivity of Microsoft’s Visual Basic and the raw
power of C++ (Rajaram, 2007).

Other available data mining programming languages that could be helpful in Chemometrics and
Analytical Chemistry include Python, Perl, PHP and Ruby on Rails. Python is a general-purpose,
high-level programming language whose design philosophy emphasizes code readability (Miller &
Ranum, 2014). Hypertext preprocessor (PHP), on the other hand, is a server-side scripting language
designed primarily for web development but also used as a general-purpose programming language
(Gosselin et. al., 2010). Lastly, Ruby on Rails is an open source framework developed to increase
programmer productivity and reduce entry barriers to programming Web applications (Bachle &
Kirchberg, 2007).

In general, Chemometrics and Analytical Chemists have a wide array of programming tools to
choose from. The choice must depend on many factors such as the technical ability of the programming,
hardware and Operating System availability, User Interface options, time scale of the project and
necessity to interface to other people’s programs (Einax, 1995).

Fog Computing in Chemometrics

Over the years, the area of fog computing has captured a wide audience in research and industry
(Al-Doghman et al, 2016). Despite this, the application of fog computing in chemometrics has not
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yet been explored. Fog computing is still new and lack of a standardized definition but is a promising
solution towards the explosive growth of mobile traffics. It is known to be a lubricant of both cloud
computing and mobile applications (Luan et al, 2016).

The main aim of fog computing is to reduce the burden on cloud by gathering workloads,
services, applications and huge data to near network edge (Saharan and Kumar, 2015). One study
which utilized the use of fog computing in chemistry was publish in 2015 with a particular focus on
ultraviolet (UV) radiation (Mei et al, 2015). A method was introduced to measure the UV irradiance
by simply using mobile phone cameras. The method also utilized fog computing that facilitated in
the results being gathered and amended locally through fog server to provide relatively accurate UV
measurement (Mei et al, 2015). With the advances in sensor development in analytical chemistry,
chemometrics play an essential role in the analysis of analytical data. Nowadays, it is possible to see
many miniaturized sensors for chemical measurements. As such, fog computing is planning to use
trillions of sensors for “crowd” monitoring of our health, safety, security, and environment using
electrochemical sensors (Stetter et al, 2015). With an explosive proliferation of endpoints as brought
about by a network of this physical devices (Internet of things), fog computing provides a solution
using a hierarchical distributed architecture that extends from the edge of the network to the core
(Bonomi et al 2014).

Besides the UV mentioned earlier, Fourier transform infrared (FTIR) spectrophotometer is also
a widely used analytical instrument. Optical tabletops such as the FTIR spectrophotometer require
efficient and effective signal processing (i.e. noise reduction) to enhance the touches in the camera’s
input. As such, a novel noise reduction algorithm was proposed that incorporates fog computing
at a lower computational cost (Wolfe et al, 2010). There are other related survey papers that cover
different aspects of fog computing. For instance, Shi et al. (2015) have described the fundamental
characteristics of fog computing in healthcare systems. Peter (2015) has studied fog computing and
its ongoing applications. This paper demonstrates that fog computing can deal with big-data-created
IoT (internet of things) devices. More recently, Atlam et al. (2018) have discussed fog computing
and the IoT by presenting the state-of-the-art of fog computing and its integration with the IoT by
highlighting the benefits and implementation challenges.

Signal Processing in Chemometrics

Two major questions in Chemometrics relate to detection and estimation. While detection tries to
answer “Is a compound present?”, estimation looks to answer “What is the amount of the compound
is available?” The subjective idea of detection and the quantitative idea of estimation have been
monstrously supported with apparatuses including, for example, Spectrometry. A brilliant reference
to Signal Processing in Analytical Chemistry is in the work of Wentzell and Brown (2000).

An important part of spectrometry data analysis is Signal Processing, which is proficient
through techniques, e.g. Fourier Transformation and Wavelet Transforms. While Fourier Transforms
are valuable in identifying the frequencies present in a time-/frequency — series analysis, Wavelet
Transforms have the additional favorable position of deciding the frequency and area of the event
on a timescale. Fourier Transforms have been utilized in several applications, e.g. separation of
cyanobacterial strains (Kansiz et. al., 1999) in conjunction with FTIR spectroscopy, detection
of specific varieties of the coffee bean in coffee samples(Briandet et. al., 1996) and many other
applications as diverse as food spoilage (Ammor et. al., 2009), wine composition (Coimbra et. al.,
2002), ivory examination (Brody et. al., 2001), bacterial sample analysis (Goodacre et. al., 2002;
Kim et. al., 2005), and food microbiology research (Alvarez-Ordonez et. al., 2012). Spectral signal
estimation using Wavelet Transforms has been studied (Jetter et. al., 2000) and used for applications
such as detecting moisture content in wheat samples and determining the quality of pulp in processing
paper using Acoustic Chemometrics (Bjork, 2007). The presence of noise in these signals can be
credited to signal transfer techniques, change from simple to computerized portrayal, statistical errors,
or a priori baseline parameters. The impacts of noise are alleviated by utilizing systems such as
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thresholding, filtering, and temporal or spatial processing, to suppress the effects of noise at specific
locations in the signal. Enhancing the Signal-to-Noise Ratio (SNR) has hugely benefited from the
multi-variate signals obtained from chemometric devices.

Methods such as PCA and PLS introduced earlier in this manuscript, have long been the essential
strategies to isolate the signal from the noise. Coupled with advances in detection and estimation theory,
statistical modeling and prediction theory using neural networks, noise, and other disturbances can be
better modeled using Fourier Transforms and Wavelet Transforms. Wavelet Transform applications in
Chemometrics have been discussed in (Tan and Brown, 2002) to get the smoother multivariate signal
with less background noise and to better isolate variables for process examination in multivariate
analysis utilizing Partial Least Squares and multiresolution analysis. Particular utilizations of Wavelet
Transforms in Chemometrics have been presented in areas such as Chromatography (Daszykowski
and Walczak, 2006), the prediction of the sugar content in apples (Nicolai, Theron and Lammertyn,
2007) and recognition of sweeteners in nectar (Zhu, et. al., 2010).

Data Storage in Chemometrics and Analytical Chemistry

The very large-scale data sets generated by statistical and mathematical tools used for analyzing
chemometric data is driven from the current trends in data generation. A computing revolution
has facilitated large-scale data generation in applications as diverse as Genomics, pharmaceutical
applications (Singh et. al., 2013), Spectrometry (Marhuenda-Egea et. al., 2013), Food Quality (Cruz
et. al., 2013), biological and environmental analysis (Szefer, 2003), atmospheric precipitates (Ofner
et. al., 2015), Medicinal Chemistry (Lusher et. al., 2014) and Toxicity (Azmi et. al., 2005). The data
generated in these real-world applications are multi-dimensional, leading to an n-dimensional data
space, and semantics where the memory and computational power requirements might lead to the
inadequacy of main memory to store all the data. Two different approaches to data storage have been
outlined (Kantardzic, 2011) to address this problem:

e Incremental clustering: The data are stored in the secondary memory and data items are
transferred to the main memory one at a time for clustering. Only the cluster representations are
stored permanently in the main memory to alleviate space limitations.

e Divide and conquer: The data set can be stored in a secondary memory and subsets of this data
are clustered independently, followed by a merging step to yield a clustering of the entire set.

Incremental Clustering

An incremental clustering approach is the most popular. The following are the steps of the incremental-
clustering algorithm (Kantardzic, 2011):

Step 1:  Assign the first data item to the first cluster.

Step 2: Consider the next data item. Either assign this item to one of the existing clusters or assign it
to a new cluster. This assignment is done based on some criterion, for example, the distance between
the new item and the existing cluster centroids. In that case, after every addition of a new item to an
existing cluster, re-compute a new value for the centroid.

Step 3: Repeat step 2 until all the data samples are clustered.

Let us consider a sample set S of five 2-dimensional points x,(1,2), x,(0,2), x (1,3) x,(4,1), x,(5,0).
Suppose that the order of the samples is x,, x,, x; x,, x; and the threshold level of similarity between
clusters is 6=2. We now apply the incremental clustering algorithm (Kantardzic, 2011) to the sample
set S with threshold of ¢ = 2 to test for similarity within an existing cluster. A distance between
points exceeding the threshold of o = 2 signals the creation of a new cluster with the latest data point.

Since x,(1,1) is the first sample, it is assigned to the first cluster C,={x,/. The centroid of this
cluster is calculated as M, = {1,1}. Next, we analysis other samples:

The distance from the next sample x,(0,2) calculated as the Mahalanobis distance (Brereton, 2009):
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d (%, Py) = (1=0)’ +(1=2)" = 1414 (Brereton, 2009)

Since d (x,,P,) <o, the point X, belongs to the cluster C 1 The new value of the centroid of
this cluster is then given by:

P, =

cl

(1;0 , 1;2j =(0.5,1.5) (Kantardzic, 2011)

For the sample x,(1,3) the distance

d (%, Py ) =(1-05) +(3-1.5)’ =158 . Since d (x,. P,)) <0

the point x, belongs to the cluster C,. The new value of the centroid of this cluster is given by:

P = 1+0+1’1+2+3 2(0.66,2.()).(Kantardzic,2011)
cl 3 3

The subsequent distance calculation is

d (%4, Py ) = (4= 0.66)" +(1=2)" = 3.486 (Kantardzic, 2011)

Since d (x,, P.)>o, point x, is assigned to a new cluster C,. The new value of the centroid of
this cluster is given by P, = (4,1).
The last sample is compared with centroids of both clusters P, and P .,:

d(x5,P.) = \/(5 ~0.66)" +(0-2.0)" = 4.77 (Kantardzic, 2011)

d(x;,Py)= \/(5 —4)" +(0-1)" =1.414 (Kantardzic, 2011)

Since the distance between point x; and the centroid of cluster C, is less than the distance to the
centroid of cluster C,, point x; is assigned to cluster C,. The new centroid of cluster C, is given by:

P, = (%,%j = (4.5,0.5)(Kantardzic, 2011)

All samples are analyzed and a final clustering solution of two clusters is obtained:

C :{xl,)cz,)c3}andC2 = {x4»x5}'
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The incremental clustering approach will result in different calculations if the order of points
considered is changed. Although not applied iteratively in this example, the incremental clustering
approach may be used in such a manner. Also, while the above example demonstrates incremental
clustering with 2-D data and Euclidean distance between points, it can also be applied to n-dimensional
data with different distance metrics such as the simple matching coefficient, Jaccard Coefficient
and Rao’s Coefficient. An analysis of Clustering Coefficients with an application in entomology is
described by Dalirsefat et. al. (2009).

Divide and Conquer

The divide-and-conquer clustering approach has been studied in (Andrews & Fox, 2007; Khalilian et.
al., 2016) and (Cui et. al., 2014). In Khalilian, Mustapha & Sulaiman (2016), the authors present two
approaches to data analysis in large-scale data sets. The first approach deals with algorithmic analysis
where algorithms are used to generate clusters and test incoming samples for similarity with existing
clusters. However, the large-scale data sets in applications such as Chemometrics cause challenges in
insufficient data storage capacity. A second approach is that of clustering on streaming data. Thus, the
data is not stored but is analyzed on the run. This approach called *’data-stream clustering’ alleviates
data storage problems but results in unique issues related to the data such as change detection in the
data stream, detection of gradual or abrupt changes, empty clusters resulting from monotonous data
and expenditure of computational and time resources for generating empty clusters. The authors in
(Khalilian et. al., 2016) propose a modified K-Means Divide and Conquer Algorithm for data stream
clustering, which also detects outliers, outdated micro-clusters and change in the data stream.

The general concept behind a Divide and Conquer Algorithm, which falls into the general category
of divisible algorithms is that the data set is divided into two categories and then each category is
divided into two categories. This repetitive division continues until enough partitions have been created
to result in data sets of manageable size, both in terms of storage space and computational capacity of
the algorithms. Thus, the Divide and Conquer Algorithm works opposite to the incremental clustering
approach described above where each data point is considered individually at the outset and is merged
with existing clusters to form incrementally large clusters based on the threshold distance for similarity
with a cluster. In this sense, the Divide and Conquer Algorithm may be viewed as a top-down approach
for data storage while the Incremental Clustering Algorithm may be viewed as a bottom-up approach
to clustering. The Incremental Clustering Algorithm is an example of agglomerative algorithm that
merge clusters and is more frequently used in the real-world applications.

The problem of data storage and analysis of large-scale data sets requires computational tools in
data reduction where the existing data is parsed for the most relevant information for an application.
For example, an electronic assistant such as Siri or a search engine will focus on the most relevant
terms in a query to generate relevant search results. Consequently, search terms such as, “How can
I find the recipe to bake a cake?” and “cake recipe” are structured to achieve similar search results,
yet data reduction to reduce the dimensionality of data can reduce the storage requirements for the
first query by 80% (number of words in the queries). In (Andrews & Fox, 2007), the authors use a
data reduction technique based on the K Means Divide and Conquer Algorithm. The k-Means Divide
and Conquer Algorithm along with other clustering algorithms is described in Section 3.3.2 of this
manuscript and the interested reader is encouraged to refer to this section for detailed analyses.

Visualization Plots, Softwares and Toolboxes used in Chemometric Techniques

Visualization techniques exist for various regions of Chemometrics. One specific zone of Chemometrics
that depends intensely on Visualization is the multivariate analysis, which endeavors to understand
high-dimensional data. Principal Components Analysis, multidimensional scaling, and factor analysis
all depend on visualization and, to some degree or the other, plan to extend high-dimensional data
to lower (usually 2-dimensional) subspaces.
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Cluster analysis is another zone that depends on visualization. In this section, the visualization
techniques and software toolboxes for creating cluster plots are described.

PCA is the most commonly utilized method in cluster analysis and for visualizing clusters
and has been discussed above. Different software packages primarily accessible in R can perform
PCA examination: for example, prcomp, FactoMineR, cmdscale, hclust, mclust and Im. MATLAB
and SAS can also perform PCA analysis utilizing the Chemometrics Toolbox and PRINCOMP
methodology. R, in any case, offers a noteworthy preferred standpoint in that it is openly accessible.
Other commercially accessible software tools that can perform PCA analysis incorporate Eigenvector
PLS Toolbox, Camo Unscrambler, Infometrix and Symbion QT (Table 3). The essential visualization
tools for PCA incorporate screen plots for showing eigenvalue magnitude related with a part and
biplots for the simultaneous visualization of data points projected to a lower (often 2-dimensional)
subspace and variables displayed as vectors.

Factor Analysis (FA) can be performed under the R Program using the FactoMineR Package.
MATLAB can also perform FA using its Factor Analysis Toolbox. SAS also offers a FACTOR
procedure. The Eigenvector PLS Toolbox is a comprehensive software system that can perform FA,
PCA and Clustering. Other commercially available software tools that can also perform FA include
Camo Unscrambler, Infometrix and Symbion QT (Table 3). The main visualization techniques for FA
results include screen plots for displaying eigenvalue magnitudes associated with each component.
These are plotted in descending order of size to identify the most important ones. FA can also generate
factor-loading plots which provide a visualization for the degree of loading on each factor allowing
easy comparison of relative loading magnitudes among a large number of factors. Vector plot of
loadings can also be generated using FA.

In Multidimensional Scaling (MDS), a scatterplot showing the projection of the data points into
2- or 3-dimensional space, is the chief visualization tool. Any generic 2-D or 3-D plotting technique
usually works for this purpose.

In Regression Analysis including both simple and multivariable regression methods, residual
plots are an invaluable and standard tool for showing the residuals of the model, i.e. the difference
between the actual values of the dependent variable and the predicted values based on the model.
These types of plots are simple plots where the x-axis represents an independent variable and the
y-axis represents the residual. This plot shows whether the Linear Regression model is an appropriate
model for the data. For example, if strong non linear relationships exist between the independent and
dependent variables, a linear model will usually be inadequate. If the residual plot shows a random
pattern around O, this is usually a fairly reliable indicator that the data supports a linear model. If a
strong, systematic, non random pattern is seen in the residuals, then this is usually seen as evidence
that the relationship between the independent and dependent variables is non linear and therefore a
linear model is inappropriate for this type of data. Regression Analysis is a commonly used method
for predicting the outcome of a specific independent variable(s) and can be performed using various
software packages under the R program, MATLAB and SAS statistical software (Table 3).

A wide range of visualization tools exist for cluster analysis. The main tools for the 2 major
types of Clustering (discussed below) can be performed using various software packages such as
R, MATLAB, SAS, Eigenvector Toolbox, Camo Unscrambler, Infometrix Pirouette, Symbion QT.
The MODECLUS procedure clusters observations in a SAS dataset using any of several algorithms
based on nonparametric density estimates (Table 3). There are two types of Clustering Techniques:
Hierarchical and Non Hierarchical Clustering. Hierarchical Clustering utilizes dendrograms which
have been briefly discussed and illustrated above. They are top-down tree-like diagrams used to
visualize the hierarchy of clusters produced by clustering algorithms. They provide an easy way to
examine groupings of variables that are deemed similar and to visualize the degrees of dissimilarity
(inter-cluster distance) among variables. Non Hierarchical Clustering method, on the other hand, is
a category of clustering method distinguished from Hierarchical Clustering methods by the fact that
they do not have tree like structures and often they work by grouping individuals rather than variables.
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The most popular algorithm in this class of clustering methods is the k-means algorithm which has
been described previously. The main visualization tool used here is a simple scatterplot which allows
the visualization of the resulting clusters.

KustaSpec is an off-line programming tool for chemometric application improvement. The
applications developed by KustaSpec are compatible to device software KustaWIN, KustaMPL
and KustaMSI. KustaSpec includes spectra visualization, spectra processing, data conversion, and
development of single- and multi-step analysis models, test and optimization. Advancement and
adjustment of analysis models require the dealing with large data sets. For this reason, KustaSpec
grants synchronous stacking, gathering and shading of thousands of Near Infrared (NIR)-spectra.
Evince Image is a modern programming for investigation and examination of hyperspectral picture data,
with an adaptable graphical user interface which enables simple access to all functions. After import
of any common picture formats, the user can apply effective investigation systems to productively
separate applicable data from the picture. An extensive variety of visualizations are accessible, both
for raw and prepared data and a visible connection between data and designs makes the investigation
quick and powerful. Created models can then be saved and applied for prediction of new images
(LLA Instruments, 2018).

Chemometric procedures, for example, Partial Least Square (PLS), Principal Component
Regression (PCR), Principal Component Analysis (PCA), and discriminant investigation have turned
out to be standard tools for breaking down complex samples from their spectral marks. Making
powerful chemometric models commonly requires experimenting with a wide range of ways to deal
with working up the data. Thermo Scientific™ GRAMS IQ™ Spectroscopy Software makes this
procedure as simple and direct as possible. The GRAMS IQ application records the test data and gives
clients a chance to enter custom data as required. Easy-to-use tools permit the creation of multiple
combinations of modeling conditions—a series of separate “experiments” that completely define the
model to be calculated (ThermoFisher, 2018).

Another complete Chemometric Calibration Software Suite that contains advance tools for
instrument matching, calibration transfer, population structuring, sample management, and calibration
development is UCal™. Calibration transfer and validation tools of UCal™ allow Near Infrared
(NIR) clients to change over the libraries to UCal format, permitting complete re-utilization of the
important calibration data. The UCal software contains a file conversion section that converts data
into the UCal design. Data can be exported from and imported to UCal in various formats such as .svf
format, j-camp (.dx, .jdx), Gram (.spc), NIRSystems (.nir and .cal), etc. For quantitative calibrations,
UCal supports optimized PLS (Partial Least Squares) chemometric models. Optimized PLS uses the
Neighborhood Distance (ND) Principle to optimize and build databases using PLS instead of PCA
(Principle Component Analysis) to organize and structure the database. With this principle, UCal
includes a patented Condensing algorithm to remove unwanted redundancy from large databases
(Unity Scientific, 2018).

CONCLUSION

Data mining and associated data storage challenges all result from a fundamental problem that probes
for insight and hidden patterns in large data sets. Informally, the question presents itself as: What
can one learn from this data? The challenges of converting data to information has spurred a novel
discipline called Data Science, or Big Data, that seeks to combine tools from Computer Science,
Statistics and Machine Learning. In this manuscript, the applications of Big Data to Analytical
Chemistry and Chemometrics are analyzed and focused on five distinct chemometric aspects of large
data sets: data acquisition, data preprocessing, data analysis, data storage and chemometric software
and toolboxes. The techniques and algorithms presented in the manuscript reinforce the idea of using
tools from Computer Science, Statistics and Machine Learning for information retrieval and analysis
challenges inherent in large-scale data sets. Data analyses involved in Chemometrics include an array
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Table 3. Summary of Softwares for visualization tools used in Chemometrics (PCA=Principal Component Analysis, FA=Factor
Analysis, MDS=Multi-Dimensional Scaling) (R Core Team, 2016; The MathWorks Inc., 2012; SAS Institute, 2011; Eigenvector
Research, Inc., 2016; CAMO Software, 2016; Infometrix, Inc., 2016; Symbion Systems, Inc., 2016; LLA Instruments, 2018;
ThermoFisher, 2018; Unity Scientific, 2018)

Software Functions/ PCA | FA | MDS Regression Clustering
Packages/
Libraries
R prcomp X
FactoMineR X X
cmdscale X
hclust X
mclust X
Im, plot X
MATLAB Chemometrics Toolbox X X X
Factor Analysis Toolbox X
SAS FACTOR procedure X
PRINCOMP procedure X
MDS procedure X
CLUSTER, DISTANCE, X
MODECLUS procedures
GLM procedure X
Eigenvector PLS X X X
Toolbox
Camo Unscrambler X X X X X
Infometrix Pirouette X X X X
Symbion QT X X
LLA KustaSpec and X X X X
Evince
ThermoFisher X X X X
GRAMS Suite
Spectroscopy
Software
Unity Scientific, X X X X
UCal™

of Regression based methods such as PLS, PCR and Ridge Regression methods, as well as data
reduction and Pattern Recognition techniques such as PCA and Wavelet Transformation methods.

In order to be effective with data mining in any discipline, one would need to examine the storage
of Big Data. Storing Big Data is no easy task as the storage needs to be able to handle large amounts
of data and have the ability to scale upwards as more data is added to storage as time progresses. The
storage device also needs the ability to handle receiving inputs and delivering outputs as necessary
for storage practices or delivery of data to analytic tools respectively. Once the fundamental step of
Big Data Storage is satisfied, the date in question can be preprocessed.

Data Storage in Analytical Chemistry and Chemometrics has benefited from technological
advances in paradigms such as MapReduce, Cloud Computing and Parallel Computing. Additional data
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processing mechanisms for efficient storage and pattern mining have been presented such as Divide
and Conquer and Incremental Clustering to optimize storage space and computational efficiency. The
diversity of tools for data storage and analysis presented in this manuscript lend themselves readily
to similar research areas in Big Data involving complex data types (Bioinformatics, Geographical
Information Systems), Graph-based and Network Mining (Social Networks, Chemical Structures,
Biological Pathways) and Engineering and Science (Software and System Engineering, Recommender
Systems and Data Warehousing).

Once the data is preprocessed, it is then modeled to find any possible trends/correlations that
could be of use. To understand the findings, the information is often visualized in the form of a
graph (e.g., Linear Regression and Multivariable Regression) or as a Scatter plot (e.g., Clustering
and Classification). This helps illustrate and further evaluate the possible predictions and patterns of
the data that has been analyzed. Software that can visualize data range from GUI friendly software
SPSS and RapidMiner to programs in software packages such as MATLAB and Microsoft Excel. If
the software packages are not an option, it is possible to program in other languages such as C++,
Python or Java.

FUTURE RESEARCH WORK AND DIRECTIONS

As the field of data mining matures and continues to grow, we expect to see a wider range of
applications to analytical chemistry. With analytical instruments and sensors beginning to play a more
central role in various areas of chemistry, there is a greater awareness of the pivotal nature of data
science in this field. For example, the Journal of Analytical Methods in Chemistry recently introduced
a special issue called “Big Data and Data Science in Analytical Chemistry and Chemical Industry”.
This issue invites submissions covering latest breakthroughs in data analysis methodology in analytical
chemistry. Efforts such as this will broaden the reach of data analytic tools useful for dealing with
challenges in analytical chemistry. Another important goal moving forward is the development of
machine learning tools specifically for problems in analytical chemistry. This is a potential avenue
for future research. Most statistical and analytical techniques used in chemometrics were originally
designed for application to other fields, but there are certain aspects of the data generated by analytical
instruments that are unique to this field. This requires a new breed of analytical chemists who are
well-versed and comfortable in both areas, and can develop more powerful analytical approaches
specifically tailored to analytical chemistry applications. Now, more than ever, training and educational
programs in analytical chemistry need to begin incorporating elements of data science like statistical
analysis, machine learning, and programming. With the large amount of data generated by various
analytical instruments, it is anticipated that the use of fog computing will facilitate in data storage,
calculations, and signal processing with specific applications in optical sensors.
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